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为什么扩散模型？
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➢变分自编码器 (VAE):

➢训练稳定，潜空间有意义，能显式计算似然下界

➢生成的图像普遍模糊，难以达到逼真效果

➢生成对抗网络 (GAN)

➢能够生成非常清晰、锐利的图像

➢训练不稳定，易发生模式坍塌 (Mode Collapse)，难以优化

➢能否设计一个模型，既能稳定地训练，又能生成高质量、多样化的样本？

➢三个期望目标

➢扩散模型 提出了一种全新的范式。它不直接学习从简单噪声到复杂图像的一步映射，

而是学习一个可控的、多步的、逐步去噪的过程

➢提升了样本质量 (Sample Quality) 和训练稳定性 (Training Stability)

生成模型的“三难困境”



预测风雨的“数字雕塑家”
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➢原始数据（ 𝑥0 ）：一座精美绝伦的数字雕塑（例如，一张清晰的猫的照片）

➢扩散过程（Forward／Diffusion Process），对于每个雕塑

➢每个时间步（timestep），雕塑被轻微地风雨腐蚀（加入少量高斯噪声）

➢经过若干时间步（如𝑇 = 1000），雕塑最终变成充满噪声的混沌石块（𝑥𝑇）

➢要点：“腐蚀”过程是固定的、已知的、简单的。“腐蚀”的强度（噪声大小）也是已知的

➢逆扩散过程（Reverse／Denoising Process）

➢训练一位技艺高超的＂数字雕塑家＂（一个神经网络，通常是U-Net）

➢输入：任意的时间戳 𝑡，被腐蚀了 𝑡 步的石块（ 𝑥𝑡 ）

➢训练目标：雕塑家能预测导致𝑥𝑡的风雨腐蚀（然后，可将石块恢复到状态𝑥𝑡−1 ）

类比：能预测风雨的“数字雕塑家”
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➢“数字雕塑家” 风雨预测能力训练的技术路线

➢对每一雕塑，逐步风雨以生成数据集（ (𝑡, 𝑥𝑡, 𝛜t)数据对），用于监督风雨预测网络训练

➢预测网络洞察的这一批雕塑（训练集）的，各个时间步的风雨腐蚀，得到

➢噪声预测神经网络：𝛜𝛉 𝐱𝑡, 𝑡

➢对于每个时间步𝑡

➢扩散过程

➢雕塑𝑥𝑡−1被轻微地风雨腐蚀（加入少量高斯噪声）成石块𝑥𝑡

➢逆扩散过程

➢神经网络雕塑家预测导致𝑥𝑡的风雨腐蚀（噪声）

➢扩散模型的核心

➢训练：训练一个能精确预测风雨的神经网络

➢生成：从 𝑡 = 𝑇 开始，将混沌石块，一步步预测逆转风雨，雕刻出一座全新的雕塑

如何训练风雨预测能力？



VAE到扩散模型
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➢VAE 是一个拥有潜变量的模型

➢𝑝𝜃 𝐱 ∣ 𝐳 是从潜变量𝐳到观测变量𝐱的概率分布,我们使用解码器网络建模。

➢ 𝑞𝜙 𝐳 ∣ 𝐱 是从观测变量 𝐱 到潜变量 𝑧 的概率分布,我们使用编码器网络进行建模

➢分层 VAE

➢假定马尔可夫性,可以防止参数增加

➢图中一共有 2𝑇 个概率分布。如果简单通过神经网络进行建模,需要 𝑇 个解码器的神经网络和

𝑇 个编码器的神经网络,即一共需要 2𝑇 个神经网络。随着 𝑇 的增大,这种实现方式越来越困难

VAE与分层的VAE
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➢改进

➢使观测变量和潜变量的维度相同

➢编码器添加基于固定的正态分布采样的噪声

➢添加噪声的过程 𝑞 只是简单地添加固定的高斯噪声，不需要参数 𝜙

➢类似于将牛奶倒入咖啡中，牛奶逐渐“扩散” 至整杯咖啡

➢第 𝑡 个噪声数据 𝑥𝑡 称为时刻 𝑡 的噪声数据

➢扩散模型使用神经网络对去除噪声的处理进行建模

➢𝐱0 是观测变量，其余的 𝐱1, 𝐱2, ⋯ , 𝐱𝑇 为潜变量

进入扩散模型



扩散过程和逆扩散过程的计算
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➢扩散过程：固定参数，无需学习， 添加噪声，共𝑇步

➢𝑞 𝐱𝑡 ∣ 𝐱𝑡−1 = 𝒩 𝐱𝑡; 1 − 𝛽𝑡𝐱𝑡−1, 𝛽𝑡𝐈

➢均值为 1 − 𝛽𝑡𝐱𝑡−1，协方差矩阵为 𝛽𝑡𝐈，正态分布。

➢𝑡 为 1 ≤ 𝑡 ≤ 𝑇 的整数。 𝛽𝑡 是预设值。 𝛽𝑡越大， 添加的噪声就越大， 𝛽1, 𝛽2, ⋯ , 𝛽𝑇 为 “噪声调度”参数

➢如果 𝑇足够大 (如 1000)，且噪声调度调整到一定的范围，那么可以得到 𝑝 𝐱𝑇 ≈ 𝒩 𝐱𝑇; 𝟎, 𝐈

➢重参数化技巧计算：

𝜀 ∼ 𝑁 𝜀; 𝟎, 𝐈

𝐱𝑡 = 1 − 𝛽𝑡𝐱𝑡−1 + 𝛽𝑡𝜀

扩散过程
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➢逆扩散过程是去除噪声的处理 。这个去除噪声的过程通过神经网络进行

➢使用单个神经网络对每个时刻数据进行噪声去除处理

➢
ො𝐱𝑡−1 = NN 𝐱𝑡 , 𝑡; 𝛉

𝑝𝜃 𝐱𝑡−1 ∣ 𝐱𝑡 = 𝒩 𝐱𝑡−1; ො𝐱𝑡−1, 𝐈

➢训练时，只关注每一次的噪声预测，并没有后续的处理

➢推理时，噪声去除后，直接进入下一个阶段

➢重参数化技巧实现：𝑝𝜃 𝐱𝑡−1 ∣ 𝐱𝑡 = 𝒩 𝐱𝑡−1; ො𝐱𝑡−1, 𝐈

逆扩散过程



ELBO的近似计算
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➢【VAE的ELBO】：ELBO 𝐱; 𝛉, 𝜙 = ∫ 𝑞𝜙 𝐳 ∣ 𝐱 log
𝑝𝜃 𝐱,𝐳

𝑞𝜙 𝐳∣𝐱
d𝐳 = 𝔼𝑞𝜙 𝑧∣𝑥 log

𝑝𝜃 𝑥,𝑧

𝑞𝜙 𝑧∣𝑥

➢ELBO在扩散模型上推广

➢将 𝑥 变更为 𝑥0

➢将 𝑧 变更为 𝑥1, 𝑥2, ⋯ , 𝑥𝑇

➢去除编码器参数 𝜙 【加噪是固定过程，没有参数】

➢ELBO 𝐱0; 𝛉 = 𝔼𝑞 𝐱1,𝐱2,⋯,𝐱𝑇∣𝐱0
log

𝑝𝛉 𝐱0,𝐱1,⋯,𝐱𝑇

𝑞 𝐱1,𝐱2,⋯,𝐱𝑇∣𝐱0

➢记𝐱0:𝑇 = 𝐱0, 𝐱1, ⋯ , 𝐱𝑇，扩散模型的 ELBO

ELBO 𝐱0; 𝛉 = 𝔼𝑞 𝐱1:𝑇∣𝐱0
log

𝑝𝜃 𝐱0:𝑇

𝑞 𝐱1:𝑇 ∣ 𝐱0

扩散模型的 ELBO
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➢【扩散模型ELBO】ELBO 𝐱0; 𝛉 = 𝔼𝑞 𝐱1:𝑇∣𝐱0
log

𝑝𝜃 𝐱0:𝑇

𝑞 𝐱1:𝑇∣𝐱0

➢𝑝𝜃 𝐱0:𝑇 = 𝑝𝜃 𝐱0 ∣ 𝐱1 𝑝𝜃 𝐱1 ∣ 𝐱2 … 𝑝𝜃 𝐱𝑇−1 ∣ 𝐱𝑇 𝑝 𝐱𝑇 = 𝑝 𝐱𝑇 ς𝑡=1
𝑇 𝑝𝜃 𝐱𝑡−1 ∣ 𝐱𝑡

➢𝑝 𝐱𝑇 表示完全高斯噪声 𝒩 𝐱𝑇; 𝟎, 𝐈 ; 马尔可夫性

➢𝑞 𝐱1:𝑇 ∣ 𝐱0 = ς𝑡=1
𝑇 𝑞 𝐱𝑡 ∣ 𝐱𝑡−1

扩散模型的 ELBO

ELBO 𝐱0; 𝛉 = 𝔼𝑞 𝐱1:𝑇∣𝐱0
log

𝑝𝜃 𝐱0:𝑇

𝑞 𝐱1:𝑇 ∣ 𝐱0

= 𝔼𝑞 𝐱𝑡,𝑇∣𝐱0
log

𝑝 𝐱𝑇 ς𝑡=1
𝑇 𝑝𝜃 𝐱𝑡−1 ∣ 𝐱𝑡

ς𝑡=1
𝑇 𝑞 𝐱𝑡 ∣ 𝐱𝑡−1

= 𝔼𝑞 𝐱1:𝑇∣𝐱0
log ςt=1

T 𝑝𝜃 𝐱𝑡−1 ∣ 𝐱𝑡 + log
𝑝 𝐱𝑇

ς𝑡=1
𝑇 𝑞 𝐱𝑡∣𝐱𝑡−1

【第二项与𝜃无关】

移除扩散模型ELBO中不含𝛉部分，剩下部分为 𝐽 𝛉 ，于是优化目标为

𝐽 𝛉 = 𝔼𝑞 𝐱1:𝑇∣𝐱0
log ෑ

t=1

T

𝑝𝜃 𝐱𝑡−1 ∣ 𝐱𝑡 = 𝔼𝑞 𝐱1:𝑇∣𝐱0
෍

t=1

T

log 𝑝𝜃 𝐱𝑡−1 ∣ 𝐱𝑡



一次计算T个采样

采样数时针对样本来说的
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➢目标函数 𝐽 𝛉 = 𝔼𝑞 𝐱1:𝑇∣𝐱0
σ𝑡=1

𝑇 log 𝑝𝜃 𝐱𝑡−1 ∣ 𝐱𝑡

➢期望的蒙特卡洛近似，假设样本量为1，则 𝐽 𝛉 的计算（期望计算最自然的近似）

➢𝐱1:𝑇 ∼ 𝑞 𝐱1:𝑇 ∣ 𝐱0 ，𝑇次采样

➢扩散过程基于原始数据中的 𝐱0，生成 𝐱1:𝑇 ( 𝐱1:𝑇 共有 𝑇 个变量)

➢利用 𝐱1:𝑇 计算每个时刻的 log𝑝𝜃 𝐱𝑡−1 ∣ 𝐱𝑡

➢ො𝐱𝑡−1 = NeuralNet 𝐱𝑡, 𝑡; 𝛉

➢𝑝𝜃 𝐱𝑡−1 ∣ 𝐱𝑡 = 𝒩 𝐱𝑡−1; ො𝐱𝑡−1, 𝐈

优化目标𝐽 𝛉 的近似计算

𝐽 𝛉 ≈ σt=1
T log 𝑝𝜃 𝐱𝑡−1 ∣ 𝐱𝑡 = σt=1

T log 𝒩 𝐱𝑡−1; ො𝐱𝑡−1, 𝐈 = σt=0
T−1 log𝒩 𝐱𝑡; ො𝐱𝑡 , 𝐈  

= σt=0
T−1 log

1

2𝜋 𝐷 𝐈
exp −

1

2
𝐱𝑡 − ො𝐱𝑡

⊤𝐈−1 𝐱𝑡 − ො𝐱𝑡 = σt=0
T−1 −

1

2
𝐱𝑡 − ො𝐱𝑡

⊤ 𝐱𝑡 − ො𝐱𝑡 + log
1

2𝜋 𝐷
 

= −
1

2
σ𝑡=0

𝑇−1 𝐱𝑡 − ො𝐱𝑡
⊤ 𝐱𝑡 − ො𝐱𝑡 + 𝑇log

1

2𝜋 𝐷
， 由于最后一个常数项可以忽略，于是

𝐽 𝛉 ≈ −
1

2
σ𝑡=0

𝑇−1 𝐱𝑡 − ො𝐱𝑡
⊤ 𝐱𝑡 − ො𝐱𝑡 = −

1

2
σ𝑡=0

𝑇−1 𝐱𝑡 − ො𝐱𝑡
2



2个采样
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➢𝑞 𝐱𝑡 ∣ 𝐱0  有解析表达

➢只需在原始数据 𝐱0 中添加一次噪声，就可以对任意时刻 𝑡 的 𝐱𝑡 进行采样

思路



20

➢𝑞 𝐱𝑡 ∣ 𝐱0 = 𝒩 𝐱𝑡; ᪄𝛼𝑡𝐱0, 1 − ᪄𝛼𝑡 𝐈

➢其中，𝛼𝑡 = 1 − 𝛽𝑡， ᪄𝛼𝑡 = 𝛼𝑡𝛼𝑡−1 ⋯ 𝛼1

➢𝛽𝑡 是用户设定的值

➢证明

➢𝑥 ∼ 𝒩 𝜇𝑥 , 𝜎𝑥
2 ，𝑦 ∼ 𝒩 𝜇𝑦, 𝜎𝑦

2 ，𝑧 = 𝑥 + 𝑦 ∼ 𝒩 𝜇𝑥 + 𝜇𝑦, 𝜎𝑥
2 + 𝜎𝑦

2

➢𝑞 𝐱𝑡 ∣ 𝐱𝑡−1 = 𝒩 𝐱𝑡; 1 − 𝛽𝑡𝐱𝑡−1, 𝛽𝑡𝐈

➢令𝛼𝑡 = 1 − 𝛽𝑡，则𝑞 𝐱𝑡 ∣ 𝐱𝑡−1 = 𝒩 𝐱𝑡; 𝛼𝑡𝐱𝑡−1, 1 − 𝛼𝑡 𝐈

➢𝜀𝑡 ∼ 𝒩 𝟎, 𝐈 ，𝐱𝑡 = 𝛼𝑡𝐱𝑡−1 + 1 − 𝛼𝑡𝜀𝑡；𝛆𝑡−1 ∼ 𝒩 𝟎, 𝐈 ，𝐱𝑡−1 = 𝛼𝑡−1𝐱𝑡−2 + 1 − 𝛼𝑡−1𝛆𝑡−1

➢于是

➢ 𝐱𝑡 = 𝛼𝑡𝐱𝑡−1 + 1 − 𝛼𝑡𝛆𝑡 = 𝛼𝑡 𝛼𝑡−1𝐱𝑡−2 + 1 − 𝛼𝑡−1𝛆𝑡−1 + 1 − 𝛼𝑡𝛆𝑡 = 𝛼𝑡𝛼𝑡−1𝐱𝑡−2 +

𝛼𝑡 − 𝛼𝑡𝛼𝑡−1𝛆𝑡−1 + 1 − 𝛼𝑡𝛆𝑡

➢𝐱𝑡 = 𝛼𝑡𝛼𝑡−1𝐱𝑡−2 + 1 − 𝛼𝑡𝛼𝑡−1𝜀，继续，𝐱𝑡 = 𝛼𝑡𝛼𝑡−1 ⋯ 𝛼1𝐱0 + 1 − 𝛼𝑡𝛼𝑡−1 ⋯ 𝛼1𝛆 = ᪄𝛼𝑡𝐱0 +

1 − ᪄𝛼𝑡𝛆

𝑞 𝐱𝑡 ∣ 𝐱0  的表达式推导
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➢目标函数 𝐽 𝛉 = 𝔼𝑞 𝐱1:𝑇∣𝐱0
σ𝑡=1

𝑇 log 𝑝𝜃 𝐱𝑡−1 ∣ 𝐱𝑡

2次数据采样的蒙特卡洛

𝐽 𝛉 = σ𝑡=1
𝑇 𝔼𝑞 𝐱1:𝑇∣𝐱0

log𝑝𝜃 𝐱𝑡−1 ∣ 𝐱𝑡 【1: 𝔼𝑝 𝑥,𝑦 𝑥 + 𝑦 = 𝔼𝑝 𝑥 𝑥 + 𝔼𝑝 𝑦 𝑦  】

= σ𝑡=1
𝑇 𝔼𝑞 𝑥𝑡−1,𝑥𝑡∣𝑥0

log𝑝𝜃 𝐱𝑡−1 ∣ 𝐱𝑡 【2: 𝔼𝑝 𝑥,𝑦 𝑓 𝑥 = 𝔼𝑝 𝑥 𝑓 𝑥  】

𝐽 𝛉 = σ𝑡=1
T 𝔼𝑞 𝑥𝑡−1,𝑥𝑡∣𝑥0

log𝑝𝜃 𝐱𝑡−1 ∣ 𝐱𝑡 = 𝑇𝔼𝑢 𝑡 𝔼𝑞 𝐱𝑡−1,𝐱𝑡∣𝐱0
log𝑝𝜃 𝐱𝑡−1 ∣ 𝐱𝑡  

蒙特卡洛采样【时间T次累加转为1次时间采样，然后𝑞 𝐱𝑡−1, 𝐱𝑡 ∣ 𝐱0 进行2次数据采样】

𝑡 ∼ 𝑈{1, 𝑇} 

𝐱𝑡−1 ∼ 𝑞 𝐱𝑡−1 ∣ 𝐱0  

𝐱𝑡 ∼ 𝑞 𝐱𝑡 ∣ 𝐱𝑡−1  

𝐽 𝜃 ≈ 𝑇log𝑝𝜃 𝐱𝑡−1 ∣ 𝐱𝑡  ≈ −
𝑇

2
𝐱𝑡−1 − ො𝐱𝑡−1

2，其中

ො𝐱𝑡−1 = NeuralNet 𝐱𝑡 , 𝑡; 𝜃  

𝑝𝜃 𝐱𝑡−1 ∣ 𝐱𝑡 = 𝒩 𝐱𝑡−1; ො𝐱𝑡−1, 𝐈



一次计算1个采样
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➢ 𝑞 𝐱𝑡−1 ∣ 𝐱𝑡, 𝐱0  表示给定 𝐱0 和 𝐱𝑡 时的 𝐱𝑡−1 的概率，一次计算即可完成

思路
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➢𝑞 𝐱𝑡−1 ∣ 𝐱𝑡, 𝐱0 = 𝒩 𝐱𝑡−1; 𝛍𝑞 𝐱𝑡, 𝐱0 , 𝜎𝑞
2 𝑡 𝐈

➢𝛼𝑡 = 1 − 𝛽𝑡, ᪄ 𝛼𝑡 = 𝛼𝑡𝛼𝑡−1 ⋯ 𝛼1

➢𝛍𝑞 𝐱𝑡 , 𝐱0 =
𝛼𝑡 1− ᪄𝛼𝑡−1 𝐱𝑡+ ᪄𝛼𝑡−1 1−𝛼𝑡 𝐱0

1− ᪄𝛼𝑡
, 𝜎𝑞

2 𝑡 =
1−𝛼𝑡 1− ᪄𝛼𝑡−1

1− ᪄𝛼𝑡

➢可以将该线性和，解释为两个点的内分点

𝑞 𝐱𝑡−1 ∣ 𝐱𝑡, 𝐱0 的计算
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【目标函数】𝐽 𝛉 = 𝑇𝔼𝑢 𝑡 𝔼𝑞 𝐱𝑡−1,𝐱𝑡∣𝐱0
log𝑝𝜃 𝐱𝑡−1 ∣ 𝐱𝑡

令𝐽0 = 𝔼𝑞 𝐱𝑡−1,𝐱𝑡∣𝐱0
log𝑝𝜃 𝐱𝑡−1 ∣ 𝐱𝑡 ，于是，𝐽 𝛉 = 𝑇𝔼𝑢 𝑡 𝐽0

令𝐽1  = 𝔼𝑞 𝐱𝑡−1,𝐱𝑡∣𝐱0
log

𝑝𝜃 𝐱𝑡−1∣𝐱𝑡

𝑞 𝐱𝑡−1∣𝐱𝑡,𝐱0
= 𝐽0  −  𝔼𝑞 𝐱𝑡−1,𝐱𝑡∣𝐱0

log𝑞 𝐱𝑡−1 ∣ 𝐱𝑡, 𝐱0 ，

于是，优化子目标为：𝐽1 = −𝔼𝑞 𝐱𝑡∣𝐱0
𝐷KL 𝑞 𝐱𝑡−1 ∣ 𝐱𝑡, 𝐱0 ∥ 𝑝𝜃 𝐱𝑡−1 ∣ 𝐱𝑡

又，𝑝𝜃 𝐱𝑡−1 ∣ 𝐱𝑡 = 𝒩 𝐱𝑡−1; 𝛍𝜃 𝐱𝑡 , 𝑡 , 𝜎𝑞
2 𝑡 𝐈 ，其中，ො𝐱𝑡−1 = NeuralNet 𝐱𝑡 , 𝑡; 𝛉 = 𝛍𝜃 𝐱𝑡 , 𝑡 , 

且，𝑞 𝐱𝑡−1 ∣ 𝐱𝑡, 𝐱0 = 𝒩 𝐱𝑡−1; 𝛍𝑞 𝐱𝑡 , 𝐱0 , 𝜎𝑞
2 𝑡 𝐈

于是，𝐷KL 𝑞 𝐱𝑡−1 ∣ 𝐱𝑡, 𝐱0 ∥ 𝑝𝜃 𝐱𝑡−1 ∣ 𝐱𝑡 =
1

2𝜎𝑞
2 𝑡

𝛍𝜃 𝐱𝑡, 𝑡 − 𝛍𝑞 𝐱𝑡, 𝐱0
2
，

因此，定义LOSS 𝐱0; 𝛉 = 𝔼𝑢 𝑡 𝔼𝑞 𝐱𝑡∣𝐱0

1

𝜎𝑞
2 𝑡

𝛍𝜃 𝐱𝑡, 𝑡 − 𝛍𝑞 𝐱𝑡, 𝐱0
2

，其计算

1次采样的𝐽 𝛉 优化

𝑡 ∼ 𝑈{1, 𝑇}
𝐱𝑡 ∼ 𝑞 𝐱𝑡 ∣ 𝐱0

LOSS 𝐱0; 𝛉 =
1

𝜎𝑞
2 𝑡

𝛍𝜃 𝐱𝑡 , 𝑡 − 𝛍𝑞 𝐱𝑡 , 𝐱0
2



扩散模型的训练



1次采样的扩散模型训练

𝛍𝑞 𝐱𝑡, 𝐱0  作为训练数据
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➢ Repeat:

➢1. 从训练数据中随机获取 𝐱0

➢2. 𝑡 ∼ 𝑈{1, 𝑇} (基于均匀分布生成整数 𝑡 )

➢3. 𝜀 ∼ 𝒩 𝟎, 𝐈

➢4. 𝐱𝑡 = ᪄𝛼𝑡𝐱0 + 1 − ᪄𝛼𝑡𝛆 (基于 𝑞 𝐱𝑡 ∣ 𝐱0  采样)

➢5. 𝛍𝑞 𝐱𝑡 , 𝐱0 =
𝛼𝑡 1− ᪄𝛼𝑡−1 𝐱𝑡+ ᪄𝛼𝑡−1 1−𝛼𝑡 𝐱0

1− ᪄𝛼𝑡

➢6. 𝜎𝑞
2 𝑡 =

1−𝛼𝑡 1− ᪄𝛼𝑡−1

1− ᪄𝛼𝑡

➢7. LOSS 𝐱0; 𝛉 =
1

𝜎𝑞
2 𝑡

𝛍𝜃 𝐱𝑡 , 𝑡 − 𝛍𝑞 𝐱𝑡 , 𝐱0
2

➢8. 计算
𝜕

𝜕𝛉
LOSS 𝐱0; 𝛉  ,并通过梯度法更新参数

扩散模型的训练算法



29

➢将训练数据 𝛍𝑞 𝐱𝑡, 𝐱0  解释为 𝐱𝑡 和 𝐱0 的 “内分点”

➢𝛍𝑞 𝐱𝑡 , 𝐱0 =
𝛼𝑡 1− ᪄𝛼𝑡−1 𝐱𝑡+ ᪄𝛼𝑡−1 1−𝛼𝑡 𝐱0

1− ᪄𝛼𝑡

➢神经网络

➢𝛍𝜃 𝐱𝑡 , 𝑡

➢损失函数

➢ LOSS 𝐱0; 𝛉 =
1

𝜎𝑞
2 𝑡

𝛍𝜃 𝐱𝑡 , 𝑡 − 𝛍𝑞 𝐱𝑡 , 𝐱0
2

以 𝛍𝑞 𝐱𝑡, 𝐱0  作为训练数据的扩散模型



恢复原始数据的神经网络
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➢𝛍𝑞 𝐱𝑡, 𝐱0 =
𝛼𝑡 1− ᪄𝛼𝑡−1 𝐱𝑡+ ᪄𝛼𝑡−1 1−𝛼𝑡 𝐱0

1− ᪄𝛼𝑡

➢神经网络调整类似形式

➢𝛍𝜃 𝐱𝑡 , 𝑡 =
𝛼𝑡 1− ᪄𝛼𝑡−1 𝐱𝑡+ ᪄𝛼𝑡−1 1−𝛼𝑡 ො𝑥𝜃 𝐱𝑡,𝑡

1− ᪄𝛼𝑡

➢神经网络：ො𝐱𝜃 𝐱𝑡, 𝑡  推断的值

➢损失函数

➢𝐷KL 𝑞 𝐱𝑡−1 ∣ 𝐱𝑡 , 𝐱0 ∥ 𝑝𝜃 𝐱𝑡−1 ∣ 𝐱𝑡 =
1

2𝜎𝑞
2 𝑡

𝛍𝜃 𝐱𝑡 , 𝑡 − 𝛍𝑞 𝐱𝑡 , 𝐱0
2
 

➢ =
1

2𝜎𝑞
2 𝑡

᪄𝛼𝑡−1 1−𝛼𝑡

1− ᪄𝛼𝑡

2

ො𝐱𝜃 𝐱𝑡, 𝑡 − 𝐱0
2
 

➢神经网络以 𝐱0 作为训练数据进行训练,使得输出的 ො𝐱𝜃 𝐱𝑡, 𝑡  与 𝐱0 相同

恢复原始数据的神经网络



预测噪声的神经网络
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➢𝑞 𝐱𝑡 ∣ 𝐱0 = 𝒩 𝐱𝑡; ᪄𝛼𝑡𝐱0, 1 − ᪄𝛼𝑡 𝐈 开始，𝜀 ∼ 𝒩 𝟎, 𝐈 ， 𝐱𝑡 = ᪄𝛼𝑡𝐱0 + 1 − ᪄𝛼𝑡𝜀，

因此， 𝐱0 =
𝐱𝑡− 1− ᪄𝛼𝑡𝛆

᪄𝛼𝑡
，𝛍𝑞 𝐱𝑡, 𝐱0 =

𝛼𝑡 1− ᪄𝛼𝑡−1 𝐱𝑡+ ᪄𝛼𝑡−1 1−𝛼𝑡 𝐱0

1− ᪄𝛼𝑡
=

1

𝛼𝑡
𝐱𝑡 −

1−𝛼𝑡

1− ᪄𝛼𝑡
𝜀

➢将 𝜇𝜃 𝑥𝑡 , 𝑡  变形为与该式类似形式，𝛍𝜃 𝐱𝑡 , 𝑡 =
1

𝛼𝑡
𝐱𝑡 −

1−𝛼𝑡

1− ᪄𝛼𝑡
𝜀𝜃 𝐱𝑡 , 𝑡

➢损失函数𝐷KL 𝑞 𝐱𝑡−1 ∣ 𝐱𝑡, 𝐱0 ∥ 𝑝𝜃 𝐱𝑡−1 ∣ 𝐱𝑡

➢=
1

2𝜎𝑞
2 𝑡

𝛍𝜃 𝐱𝑡, 𝑡 − 𝛍𝑞 𝐱𝑡, 𝐱0
2

=
1

2𝜎𝑞
2 𝑡

1−𝛼𝑡
2

1− ᪄𝛼𝑡 𝛼𝑡
𝜀𝜃 𝐱𝑡, 𝑡 − 𝜀

2
 

预测噪声的神经网络



新数据的采样
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扩散模型的训练算法 (噪声预测版本)

1: 𝐱𝑇 ∼ 𝒩 𝟎, 𝐈

2: for 𝑡 in 𝑇, ⋯ , 1  :

3: 𝜀 ∼ 𝒩 𝟎, 𝐈

4: if 𝑡 = 1 then 𝜀 = 0

5: 𝜎𝑞 𝑡 =
1−𝛼𝑡 1− ᪄𝛼𝑡−1

1− ᪄𝛼𝑡

6: 𝐱𝑡−1 =
1

𝛼𝑡
𝐱𝑡 −

1−𝛼𝑡

1− ᪄𝛼𝑡
𝜀𝜃 𝐱𝑡 , 𝑡 + 𝜎𝑞 𝑡 𝜀

7: return 𝑥0

新数据的采样
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➢我们为什么不直接从 𝑥𝑇 一步到位生成 𝑥0？为何要费力地走 𝑇 步？

➢𝑥𝑇 →
神经网络一步预测

ො𝑥0 (为什么不行？)

➢神经网络的预测，在噪声很大时是极其不准确

➢预估

➢在噪声很大时（例如 𝑡 接近 𝑇），𝑥𝑡 中几乎不包含任何关于 𝑥0 的有效信息。此时让网络直接预测 𝑥0，

其结果（我们称之为 ො𝑥0）会非常粗糙、模糊，仅仅是一个“大概的轮廓”或“方向性的猜测”

➢这个 ො𝑥0 本身质量很差，不能作为最终结果

➢修正

➢粗糙的“预估” ො𝑥0为我们如何从当前的 𝑥𝑡 迈向更清晰一点的 𝑥𝑡−1 提供了至关重要的指引

➢利用这个粗糙的 ො𝑥0，代入之前推导出的后验分布 𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0) 的公式中，计算出一个更可靠的 𝑥𝑡−1

➢本质：不完全相信神经网络一步到位的预测，只相信它给出的“一小步”方向

➢我们只利用它的预测结果，来稳健地将状态从 𝑡 推进到 𝑡 − 1。

核心困惑：为何需要多步“预估-修正”？
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➢扩散模型的生成过程，是一个典型的“预估-修正”迭代过程

➢它通过 𝑇  次微小、稳健的“预估-修正”循环，将一个极其困难的“一步生成”问题，

分解为 𝑇 个更简单的“单步去噪”问题，从而在保证稳定性的前提下，逐步累积细节，

最终生成高质量的图像

核心困惑：为何需要多步“预估-修正”？



扩散模型的实现
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➢噪声预测网络𝜀𝜃 𝐱𝑡, 𝑡

U-Net
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➢基本结构ConvBlock

U-Net 的网络结构
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➢正弦位置编码

➢𝐯𝑖 =

sin
𝑡

10000
𝑖
𝐷

 (i为偶数时) 

cos
𝑡

10000
𝑖
𝐷

 (i为奇数时) 

正弦位置编码
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➢嵌入后的U-Net以及新ConvBlock

正弦位置编码嵌入U-Net



条件扩散模型
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➢可以考虑使用神经网络对 𝛍𝜃 𝐱𝑡, 𝑡  和 𝜀𝜃 𝐱𝑡, 𝑡  进行建模

复习
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➢通过向神经网络中添加标签 𝑦 ,可以使模型 “进化” 为条件扩散模型

条件扩散模型



得分函数
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➢指引是一种将给定条件纳入模型并给予更多重视的机制

➢ 神经网络𝜀𝜃 𝐱𝑡, 𝑡  基于 𝐱𝑡 和 𝑡 来推断噪声 𝜀：𝜀 ≈ − 1 − ᪄𝛼𝑡∇𝑥𝑡
log𝑝 𝐱𝑡  

➢“得分函数” 或 “得分” ：𝑠𝜃 𝑥𝑡, 𝑡 = ∇𝑥𝑡
log𝑝 𝐱𝑡 = −

1

1− ᪄𝛼𝑡
𝜖𝜃 𝑥𝑡, 𝑡

➢输入数据 𝐱𝑡  的对数似然log𝑝 𝐱𝑡 对𝐱𝑡的梯度

使用的推断噪声 𝜀 的神经网络



分类器指引
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➢从得分的角度的指引方法，两种主要类型: 分类器指引 (classifier guidance) 和无分类

器指引 (classifier-free guidance)

➢∇𝐱𝑡
log𝑝 𝐱𝑡 ∣ 𝑦

⏟

 条件得分 

= ∇𝐱𝑡
log𝑝 𝐱𝑡

⏟

 1得分 

+ ∇𝐱𝑡
log𝑝 𝑦 ∣ 𝐱𝑡

⏟

 2分类器的对数似然的梯度 
➢1此项可以使用预测得分的神经网络 𝐬𝜃 𝐱𝑡 , 𝑡  来计算

➢2指导项可以使用作为分类器的神经网络来计算

➢∇𝐱𝑡
log𝑝 𝑦 ∣ 𝐱𝑡  可以通过反向传播求出

分类器
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➢1.分类器

➢能够处理任意噪声水平的分类器 𝑝𝜓 的输入是带噪图像 𝑥𝑡 和时间步 𝑡（或等价的噪声水平

𝜎𝑡 ），输出类别概率

➢2．训练数据生成

➢从带标签的数据集中取一个样本（ 𝑥0, 𝑐 ）。随机采样一个时间步 𝑡（从 1 到 𝑇 ）。根据扩散

模型的前向过程，生成对应的带噪图像 𝑥𝑡 = 𝛼𝑡𝑥0 + 𝜎𝑡𝜖 ，其中 𝜖 ∼ 𝒩(0, 𝐼) 。这样得到了一个

训练样本：输入是 𝑥𝑡 , 𝑡 ，标签是 𝑐

➢3．训练目标：使用标准的交叉嫡损失

阶段一 - 分类器𝑝𝜙 𝑐 ∣ 𝑥𝑡, 𝑡
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➢在扩散模型的每一步反向采样过程中（例如，从 𝑡𝑖 到 𝑡𝑖−1 ），执行以下操作：

➢1．获取当前状态 - 带噪图像 𝑥𝑡𝑖

➢2．计算指导梯度 - 计算对于目标类别 𝑐 的指导项∇𝐱𝑡
log𝑝𝜙 𝑐 ∣ 𝑥𝑡𝑖

, 𝑡𝑖

➢启用梯度：将 𝑥𝑡𝑖
视为一个需要计算梯度的变量

➢前向传播：将 𝑥𝑡𝑖
, 𝑡𝑖 输入到我们训练好的分类器 𝑝𝜓 中，得到所有类别的对数概率（logits）

➢选择目标：从输出的对数概率中，取出目标类别 𝑐 对应的那个值，即log𝑝𝜙 𝑐 ∣ 𝑥𝑡𝑖
, 𝑡𝑖

➢反向传播：对这个标量值调用 ．backward()

➢提取梯度：此时，框架会自动计算出log𝑝𝜙 𝑐 ∣ 𝑥𝑡𝑖
, 𝑡𝑖 相对于输入 𝑥𝑡𝑖

的梯度，并存储在𝑥𝑡𝑖
. 𝑔𝑟𝑎𝑑 中

阶段二 - ∇𝐱𝑡
log𝑝𝜙 𝑦 ∣ 𝐱𝑡 计算
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➢向分类器指引中引入权重 𝛾 , ∇𝐱𝑡
log𝑝 𝐱𝑡 ∣ 𝑦 = ∇𝐱𝑡

log𝑝 𝐱𝑡 + 𝛾∇𝐱𝑡
log𝑝 𝑦 ∣ 𝐱𝑡

➢使用表示推断得分的神经网络 𝐬𝜃 𝐱𝑡, 𝑡  和表示分类器的 𝑝𝜙 𝑦 ∣ 𝐱𝑡

➢∇𝐱𝑡
log𝑝 𝐱𝑡 ∣ 𝑦 ≈ 𝐬𝜃 𝐱𝑡, 𝑡 + 𝛾∇𝐱𝑡

log𝑝𝜙 𝑦 ∣ 𝐱𝑡

分类器指引



无分类器指引
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➢从分类器指引的核心公式∇𝑥𝑡
log 𝑝 𝑥𝑡 ∣ 𝑐 = ∇𝑥𝑡

log 𝑝 𝑥𝑡 + ∇𝑥𝑡
log 𝑝 𝑐 ∣ 𝑥𝑡 出发

➢贝叶斯定理，𝑝 𝑐 ∣ 𝑥𝑡 =
𝑝 𝑥𝑡∣𝑐 𝑝(𝑐)

𝑝 𝑥𝑡
，取对数并对 𝑥𝑡 求梯度

➢∇𝑥𝑡
log 𝑝 𝑐 ∣ 𝑥𝑡 = ∇𝑥𝑡

log 𝑝 𝑥𝑡 ∣ 𝑐 − ∇𝑥𝑡
log 𝑝 𝑥𝑡

➢代入带指导强度𝛾的分类器指引公式中，得到CFG的插值形式

➢ ƿ𝑠 𝑥𝑡 , 𝑡, 𝑐 = ∇𝑥𝑡
log 𝑝 𝑥𝑡 + 𝛾 ⋅ ∇𝑥𝑡

log 𝑝 𝑐 ∣ 𝑥𝑡  

= ∇𝑥𝑡
log 𝑝 𝑥𝑡 + 𝛾 ⋅ ∇𝑥𝑡

log 𝑝 𝑥𝑡 ∣ 𝑐 − ∇𝑥𝑡
log 𝑝 𝑥𝑡  

= (1 − 𝛾)∇𝑥𝑡
log 𝑝 𝑥𝑡 + 𝛾∇𝑥𝑡

log 𝑝 𝑥𝑡 ∣ 𝑐  

➢更常用一个等价的外插形式：

➢

ƿ𝑠 𝑥𝑡 , 𝑡, 𝑐 = ∇𝑥𝑡
log 𝑝 𝑥𝑡 ∣ 𝑐 + 𝛾 ⋅ ∇𝑥𝑡

log 𝑝 𝑥𝑡 ∣ 𝑐 − ∇𝑥𝑡
log 𝑝 𝑥𝑡

= (1 + 𝛾)∇𝑥𝑡
log 𝑝 𝑥𝑡 ∣ 𝑐 − 𝛾∇𝑥𝑡

log 𝑝 𝑥𝑡

➢其含义：从标准的条件分数出发，额外加上𝛾倍的＂方向偏差＂，从而强化条件信号

无分类器指引（Classifier-Free Guidance, CFG）
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➢使用推断得分的神经网络实现的无分类器指引

➢∇𝑥𝑡
log𝑝 𝐱𝑡 ∣ 𝑦 ≈ 𝐬𝜃 𝐱𝑡 , 𝑡, ⌀ + 𝛾 𝐬𝜃 𝐱𝑡 , 𝑡, 𝑦 − 𝐬𝜃 𝐱𝑡 , 𝑡, ⌀

无分类器指引



Stable Diffusion
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➢ Stable Diffusion 的训练流程

Stable Diffusion 的工作原理
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➢在生成新数据时, Stable Diffusion 会从潜在空间中的高斯噪声开始,执行逆扩散过程。

最后在逆扩散过程结束时,它会再使用 VAE 解码器变换到像素空间

生成新数据
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➢CLIP 的训练流程

CLIP 的训练流程
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➢引入了注意力层的 U-Net

注意力机制
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